Login
Register

Home

Research

Teaching

Events

Blog

Items filtered by date: Sunday, 11 October 2020

 Speaker: Li Wang (University of Minnesota)

We develop a novel semi-implicit scheme for the crystal surface evolution equation, which suffers from significant stiffness that prevents simulation on fine spatial grids. Our method leverages the formal structure of the equation as the gradient flow of the total variation energy, with respect to a weighted \(H^{-1}\) norm. Inspired by the classical minimizing movement scheme, we reformulate the semi-implicit time discretization into an optimization problem, and then use a primal-dual hybrid gradient (PDHG) method to compute the minimizer. In one dimension, we prove the convergence of PDHG to the semi-implicit scheme, and show that, at the discrete level, our PDHG method converges at a rate independent of the grid size. This is joint work with Katy Craig, Jian-Guo Liu, Jianfeng Lu and Jeremy Marzuola.
 

Time: October 23, 2020 2:30pm-3:30pm
Location: Virtually via Zoom
Host: Changhui Tan

  Access to the video of the talk

Published in ACM Seminar

 Speaker: Dallas Albritton (New York University)

In PDE analyses of fluid models, often we may identify a so-called critical space that lives precisely at the borderline between well-posedness and ill-posedness. What happens at this borderline? We explore this question in two active scalar equations with critical dissipation. In the critical surface quasi-geostrophic equations, we investigate the connection between non-uniqueness and large self-similar solutions that was established by Jia, Sverak, and Guillod in the Navier-Stokes equations. This is joint work with Zachary Bradshaw. In the critical Burgers equation, and more generally in critical scalar conservation laws, the analogous self-similar solutions are unique, and we show that all front-like solutions converge to a self-similar solution at the diffusive rates. This is joint work with Raj Beekie.
 

Time: November 13, 2020 2:30pm-3:30pm
Location: Virtually via Zoom
Host: Changhui Tan

  Access to the video of the talk

Published in ACM Seminar