CAAM 423/523 Partial Differential Equations I MATH 423/513

Fall 2017

Homework 4, Due on Tuesday, October 17, 2017

(The problems marked with (**) are optional for everybody, and do not have to be sumitted. Solving them would require additional knowledge which is not covered in class.)

1. (Noncompatibility of weak solutions under nonlinear transformations)

a). Find the entropy solution of the Riemann problem

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0, \qquad u(x,t=0) = \begin{cases} 1 & \text{if } x < 0\\ 0 & \text{if } x > 0 \end{cases}$$

b). Let $v = u^2$. Verify that if u is differentiable, then v satisfies

$$v_t + \left(\frac{2}{3}v^{3/2}\right)_x = 0, \qquad v(x,t=0) = \begin{cases} 1 & \text{if } x < 0\\ 0 & \text{if } x > 0 \end{cases}.$$

c). Find the entropy solution of the Riemann problem on v. Does the solution matches u^2 ?

Note: From this example, one can see the shock speed might change if we perform a nonlinear transformation of the equation. The reason is that chain rule does not work well with weak derivative. Think about $(H^2)_x \neq 2HH_x$ (in the weak sense), where H is the Heavyside function.

2. (System of 1D conservation law) Solve the following initial value problem

$$\begin{cases} u_t + (u+2v)_x = 0\\ v_t + (2u+v)_x = 0 \end{cases} \quad \text{with} \quad \begin{cases} u(x,t=0) = \sin x\\ v(x,t=0) = \cos(2x) \end{cases}$$

3. (Isothermal Euler equations) Consider 1D compressible Euler equations with isothermal pressure

$$\begin{cases} \rho_t + (\rho u)_x = 0\\ (\rho u)_t + (\rho u^2 + C\rho)_x = 0 \end{cases}$$

where (ρ, u) represent density and velocity respectively, and C > 0 is a constant.

- **a)**. Write the system in the form $U_t + F(U)_x = 0$, where $U = (\rho, u)$.
- **b**). Calculate the matrix $\nabla F(U)$ and find its eigenvalues. Show that the system is strictly hyperbolic if $\rho > 0$.
- c). Compute the corresponding Riemann invariants $\mathbf{w} = (w_1, w_2)$ of the system.
- d). (**)Find the condition that entropy has to satisfy. Can you find an entropy-pair?
- e). (**) Describe how you can solve a Riemann problem.