CAAM 423/523 Partial Differential Equations I
MATH 423/513 Fall 2017

Final Exam Solution

1. (20 points) Consider the following initial value problem

(uzy)? + 2 (ug,)? = B+ 2%, inR?
2
u="3. on R x {zg = 0},

with wug, (21,0) > 0 for all z; € R; 3 is a positive constant (8 > 0).
(a) Find the explicit solution u(z1,x2) of this problem for any given 5 > 0.
(b) For what value(s) of 3 is u = 0 on the parabola I' = {(z1,79) € R? : 3y = —2%}?

Solution: (a). The equation has the form F(z1, w2, z,p1,p2) = p3 + %p% —B—ax2=0. The
system of characteristic paths starting from (a, 0) reads

1 =2y 71(0) = «
Ty = ps z2(0) =0
z = Qp% + p% subject to initial condition 2(0) = %2
1= 2m p1(0) = «
]52 =0 pQ(O) = m

where p1(0) is computed from initial data, and p2(0) is computed from the equation.

To solve the ODE system, we first observe pa(s) = /23, and then xa(s) = /28s. The
coupled dynamics (z1,p1) yields x1(s) = ae?® and p1(s) = ae?®. Plug in everything to the
z equation and get z = 2a2e*® + 243, and therefore z(s) = %2645 + 26s. The solution along

the characteristic path starting from («,0) reads

o2
u(z1(s), z2(s)) = 7648 + 20s.

Now, we invert the map (a,s) — (x1,x2), and get s = %’ o = z1e~2%2/V28_ Therefore,

the solution of the initial value problem is

2
x
u(xy, o) = ?1 + V/28xs.

(b). On the porabola T, u(xy, —2?) = 5 = V2Bz%. Clearly, it is equal to zero when

%—\/2B:0, namely | = = |.
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2. (20 points) Consider the following scaler conservation law

(u+1)(8u+10) u<—1
u+ (f(u)e =0, f(u)=<1-u? -1<u<l,
(u—1)8u—10) u>1

with initial condition

5

b z <0
ugj,tIOI xr) = 4 ’
(w,t=0) = g(a) {—Zx>&

(a) Write down the weak formulation of the initial value problem. You can keep f and ¢ in
the expression without plugging in the values.

(b) Find the ezplicit entropy solution of the problem. Note: the fluz is not convex.

Solution: (a). The weak formulation of the equation states that, for any given test function
6 € C2(R x RY),

/OOO/R(u¢t+f(u)gbx)dxdt—|—/R¢($’0)g($)d$:0.

(b). We first compute the characteristic speed

2 <0

f(u) =< —2u —1<wu <1, and initially f/'(g(z)) = :
-2 x>0

16u+18 u< —1 {
16u —18 u>1

As f is neither convex nor concave in [—%, %], we need to use Oleynik condition to determine
shocks.
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As illustrated in the figure, the Oleynik condition is satisfied in [—2, —1] and [4, 2]. There-
fore, there are two shocks with speed 1 and -1. In the range [—%, %], since f is concave, there

is a rarefaction wave. Inside the fan, u(z,t) = (f/)~'(%) = —%. Note that (')~ (y) = —%.

To conclude, the entropy solution is

% T < —t
u(z,t)=q -5 —-t<z<t.
—g T >t

3. (20 points) Consider the initial value problem of the Klein-Gorden equation

g —Au+m?u=0, z€R" t>0
{u(m,t —0) = g(x), wla,t=0)=h(z),
where m > 0 is a constant.
(a) Find the wave speed |o/|y|| for any wave number y. Is the equation dispersive?
(b) Write down the definition of Fourier transform (y,t), and solve .

(c) Show that there is at most one compactly supported classical solution of the problem.
Hint: use energy method.

Solution: (a). Apply Ansatz u(z,t) = e'@*=7 to the equation, we get
(—=0” + [y[> + m*)u =0,

which implies |o| = /|y|? + m? and the wave speed for wave number y is |, /1 + ‘ZL—; . Since

the wave speed varies for different wave numbers, the equation is | dispersive |

(b). The Fourier transform of u is defined as

N 1 iz
a(y,t) = (277)"/2/Re Yu(y,t)dy.

Under Fourier transform, the equation reads i + (ly|? + m?)@ = 0, with initial condition
u(y,0) = g(y) and 4(y,0) = h(y). The solution is

h(y)

u(y,t) = g(y) cos(v/|y|? + m?t) + ————
ly|* 4+ m?2

sin(/|y[? + m?2t).

(c). Suppose u; and ug are two classical solutions of the equation. Then, w = u; — ug
also satisfies the equation with zero initial conditions. From (b), we know w(y,t) = 0.
Therefore, w = 0 and u; = ug. This implies uniqueness.

Remark: one can also show that the energy E(t) = [p.(uf 4+ [Vu|? + m*u?)dz is conserved
m time.
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4. (15 points) Show that there is at most one classical solution to the initial-boundary value

problem
Ut + Ut — Ugg = f(2,1) z € (0,1),t € (0,00),¢>0.
u(z,0) = g(z), w(x,0)=h(z) xe(0,1), t=0,
u(0,t) =u(l,t) =0 x=1{0,1}, t € (0,00).

Solution: Let w1, us be two classical solutions of the initial-boundary value problem. Take
w = u] — uy. Then w satisfies

Wit 4+ CWp — Wag =0 xz € (0,1),t € (0,00),¢ > 0.
w(z,0) =0, wi(z,00=0 =z€(0,1), t=0,
w(0,t) =w(l,t) =0 xz ={0,1}, t € (0,00).

Multiply the equation by w; and integrate in [0, 1], we obtain the following energy estimate

1 1
Ld (w? + w?)dx = —c/ wldz + (wth)% <0.
2dt J, 0
This implies the energy E(t) = fol (w? + w2)dx is not increasing, i.e. E(t) < E(0). From
initial condition, we know E(0) = 0. Therefore, since E(t) is non-negative, we conclude
E(t) = 0, namely w; = w,; = 0 almost everywhere. Since u,v are classical solutions,
w = u — v is smooth. So, w is a constant function. Since w(x,0) = 0, we get w = 0 and
u = v. This implies uniqueness.

5. (20 points) Suppose a function G satisfies the following equation
—G"+G=6(x), —oo<x<—+o0,

G(z),G'(z) — 0 as |z| — oo.,

where §(z) is the Dirac delta distribution at 2 = 0.
(a) Write down the weak formulation of the equation.
(b) Prove that G(z) = se71*l is a weak solution of the equation.

(c) Write down a formula for the solution of

—u" +u= f(x), —oo<x<+00.

Solution: (a). The weak formulation of the equation states that, for any given test function

¢ € C°(R),

| (0@ + ooy = 60)

—00
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(b). We verify that G satisfies the weak formulation.

/ ¢ (2)G(x)dx = = / D )t + L / T @)

] 4 e o o4

=300 -300 - [ d@ears g [ s
[

=_ ng(a;)em] Ooo + % 3
+ /_: é(x)G(z)dx

So, G satisfies the weak formulation. Clearly, G(z),G'(z) — 0 as |z| — .

(c). The solution is
u(w) = G fo) = [ Glo—)f )y,

6. (10 points) Suppose u is smooth and solves the heat equation uy — Au = 0 in R™ x (0, 00).

JeTda + [;W)MEO + /0 h So()e " da

(a) Show uy(z,t) := u(Ax, \?t) also solves the heat equation for each A € R.

(b) Use (a) to show v(z,t) := x - Vu(z,t) + 2tu(z,t) solves the heat equation as well. Hint:
one can show that %u,\ solves the heat equation.

Solution: (a). Given any A € R, yuy(,t) = Nuy(Ax, M%), and Auy (z,t) = N2Au(Az, \2t).
Therefore,
(g — Au)(z,t) = N2 ((up): — Auy)(Az, A2t) = 0.

(b). Since u) solves the heat equation, %u A also solves the heat equation, for any A € R.
Compute

%UA =z - Vu(\w, \2t) + 2 u Az, \%t).

Clearly, v = %u A! y_1- D0, v also solves the heat equation.

7. (15 points) Let B = {z € R? : |z| < 7}, and let u be smooth up to the boundary in B, u = 0
on the boundary of B. Let Au+ u = f. Prove that

/ sin ‘x’f(:n)dx =0.
B

]

Hint: one can use spherical representation of Laplacian operator: in 3D, if uw is radially sym-
metric, namely u(x) = v(|z|) = v(r), then

1d odv
Au:ﬂdr( dr>
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Solution: Compute

sinfz] 1 d [ 5dsinr
A — (el
|| r2dr <r dr r

sinr  sin|z|

r ]

Then, we use Gauss-Green formula and compute

sin |z| [ sin|z] () + () \d
/B f()de = /B (M) + u(z))d

For the first term, Si‘nx“m' = % =0 and u(xz) = 0 when x € 9B. Therefore,

sin |z| B sin |x| sin |z B
Jr (‘”’“’)dx‘“/B(‘ 2l )“(@d“/B ] (@) =0
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