
CAAM 423/523 Partial Differential Equations I
MATH 423/513 Fall 2017

Final Exam Solution

1. (20 points) Consider the following initial value problem{
(ux1)2 + 1

2(ux2)2 = β + x21, in R2,

u =
x21
2 . on R× {x2 = 0},

with ux2(x1, 0) > 0 for all x1 ∈ R; β is a positive constant (β > 0).

(a) Find the explicit solution u(x1, x2) of this problem for any given β > 0.

(b) For what value(s) of β is u ≡ 0 on the parabola Γ = {(x1, x2) ∈ R2 : x2 = −x21}?

Solution: (a). The equation has the form F (x1, x2, z, p1, p2) = p21 + 1
2p

2
2−β−x21 = 0. The

system of characteristic paths starting from (α, 0) reads

ẋ1 = 2p1

ẋ2 = p2

ż = 2p21 + p22
ṗ1 = 2x1

ṗ2 = 0

subject to initial condition



x1(0) = α

x2(0) = 0

z(0) = α2

2

p1(0) = α

p2(0) =
√

2β

where p1(0) is computed from initial data, and p2(0) is computed from the equation.

To solve the ODE system, we first observe p2(s) =
√

2β, and then x2(s) =
√

2βs. The
coupled dynamics (x1, p1) yields x1(s) = αe2s and p1(s) = αe2s. Plug in everything to the
z equation and get ż = 2α2e4s + 2β, and therefore z(s) = α2

2 e
4s + 2βs. The solution along

the characteristic path starting from (α, 0) reads

u(x1(s), x2(s)) =
α2

2
e4s + 2βs.

Now, we invert the map (α, s) → (x1, x2), and get s = x2√
2β
, α = x1e

−2x2/
√
2β . Therefore,

the solution of the initial value problem is

u(x1, x2) =
x21
2

+
√

2βx2.

(b). On the porabola Γ, u(x1,−x21) =
x21
2 −

√
2βx21. Clearly, it is equal to zero when

1
2 −
√

2β = 0, namely β =
1

8
.
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2. (20 points) Consider the following scaler conservation law

ut + (f(u))x = 0, f(u) =


(u+ 1)(8u+ 10) u < −1

1− u2 −1 ≤ u ≤ 1

(u− 1)(8u− 10) u > 1

,

with initial condition

u(x, t = 0) = g(x) =

{
5
4 x < 0,

−5
4 x > 0.

(a) Write down the weak formulation of the initial value problem. You can keep f and g in
the expression without plugging in the values.

(b) Find the explicit entropy solution of the problem. Note: the flux is not convex.

Solution: (a). The weak formulation of the equation states that, for any given test function
φ ∈ C∞c (R× R+), ∫ ∞

0

∫
R

(
uφt + f(u)φx

)
dxdt+

∫
R
φ(x, 0)g(x)dx = 0.

(b). We first compute the characteristic speed

f ′(u) =


16u+ 18 u < −1

−2u −1 ≤ u ≤ 1

16u− 18 u > 1

, and initially f ′(g(x)) =

{
2 x < 0

−2 x > 0
.

As f is neither convex nor concave in [−5
4 ,

5
4 ], we need to use Oleynik condition to determine

shocks.

u

f(u)

Shock Rarefaction Shock

−5
4 −1 −1

2 0 1
2 1 5

4
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As illustrated in the figure, the Oleynik condition is satisfied in [−5
4 ,−

1
2 ] and [12 ,

5
4 ]. There-

fore, there are two shocks with speed 1 and -1. In the range [−1
2 ,

1
2 ], since f is concave, there

is a rarefaction wave. Inside the fan, u(x, t) = (f ′)−1(xt ) = − x
2t . Note that (f ′)−1(y) = −y

2 .

To conclude, the entropy solution is

u(x, t) =


5
4 x < −t
− x

2t −t < x < t

−5
4 x > t

.

3. (20 points) Consider the initial value problem of the Klein-Gorden equation{
utt −∆u+m2u = 0, x ∈ Rn, t > 0

u(x, t = 0) = g(x), ut(x, t = 0) = h(x),

where m > 0 is a constant.

(a) Find the wave speed
∣∣σ/|y|∣∣ for any wave number y. Is the equation dispersive?

(b) Write down the definition of Fourier transform û(y, t), and solve û.
(c) Show that there is at most one compactly supported classical solution of the problem.

Hint: use energy method.

Solution: (a). Apply Ansatz u(x, t) = ei(y·x−σt) to the equation, we get

(−σ2 + |y|2 +m2)u = 0,

which implies |σ| =
√
|y|2 +m2 and the wave speed for wave number y is

√
1 + m2

|y|2 . Since

the wave speed varies for different wave numbers, the equation is dispersive .

(b). The Fourier transform of u is defined as

û(y, t) =
1

(2π)n/2

∫
R
e−ix·yu(y, t)dy.

Under Fourier transform, the equation reads ûtt + (|y|2 + m2)û = 0, with initial condition
û(y, 0) = ĝ(y) and ût(y, 0) = ĥ(y). The solution is

û(y, t) = ĝ(y) cos(
√
|y|2 +m2t) +

ĥ(y)√
|y|2 +m2

sin(
√
|y|2 +m2t).

(c). Suppose u1 and u2 are two classical solutions of the equation. Then, w = u1 − u2
also satisfies the equation with zero initial conditions. From (b), we know ŵ(y, t) = 0.
Therefore, w = 0 and u1 = u2. This implies uniqueness.

Remark: one can also show that the energy E(t) =
∫
Rn(u2t + |∇u|2 +m2u2)dx is conserved

in time.
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4. (15 points) Show that there is at most one classical solution to the initial-boundary value
problem 

utt + cut − uxx = f(x, t) x ∈ (0, 1), t ∈ (0,∞), c ≥ 0.

u(x, 0) = g(x), ut(x, 0) = h(x) x ∈ (0, 1), t = 0,

u(0, t) = u(1, t) = 0 x = {0, 1}, t ∈ (0,∞).

Solution: Let u1, u2 be two classical solutions of the initial-boundary value problem. Take
w = u1 − u2. Then w satisfies

wtt + cwt − wxx = 0 x ∈ (0, 1), t ∈ (0,∞), c ≥ 0.

w(x, 0) = 0, wt(x, 0) = 0 x ∈ (0, 1), t = 0,

w(0, t) = w(1, t) = 0 x = {0, 1}, t ∈ (0,∞).

Multiply the equation by wt and integrate in Ω[0, 1], we obtain the following energy estimate

1

2

d

dt

∫ 1

0
(w2

t + w2
x)dx = −c

∫ 1

0
w2
t dx+ (wtwx)|10 ≤ 0.

This implies the energy E(t) =
∫ 1
0 (w2

t + w2
x)dx is not increasing, i.e. E(t) ≤ E(0). From

initial condition, we know E(0) = 0. Therefore, since E(t) is non-negative, we conclude
E(t) = 0, namely wt = wx = 0 almost everywhere. Since u, v are classical solutions,
w = u − v is smooth. So, w is a constant function. Since w(x, 0) = 0, we get w ≡ 0 and
u ≡ v. This implies uniqueness.

5. (20 points) Suppose a function G satisfies the following equation

−G′′ +G = δ(x), −∞ < x < +∞,
G(x), G′(x)→ 0 as |x| → ∞.,

where δ(x) is the Dirac delta distribution at x = 0.

(a) Write down the weak formulation of the equation.

(b) Prove that G(x) = 1
2e
−|x| is a weak solution of the equation.

(c) Write down a formula for the solution of

−u′′ + u = f(x), −∞ < x < +∞.

Solution: (a). The weak formulation of the equation states that, for any given test function
φ ∈ C∞c (R), ∫ ∞

−∞

(
− φ′′(x)G(x) + φ(x)G(x)

)
dx = φ(0).
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(b). We verify that G satisfies the weak formulation.∫ ∞
−∞

φ′′(x)G(x)dx =
1

2

∫ 0

−∞
φ′′(x)exdx+

1

2

∫ ∞
0

φ′′(x)e−xdx

=

[
1

2
φ′(x)ex

]0
−∞
− 1

2

∫ 0

−∞
φ′(x)exdx+

[
1

2
φ′(x)e−x

]∞
0

+
1

2

∫ ∞
0

φ′(x)e−xdx

=
1

2
φ′(0)− 1

2
φ′(0)− 1

2

∫ 0

−∞
φ′(x)exdx+

1

2

∫ ∞
0

φ′(x)e−xdx

= −
[

1

2
φ(x)ex

]0
−∞

+
1

2

∫ 0

−∞
φ(x)exdx+

[
1

2
φ(x)e−x

]∞
0

+

∫ ∞
0

1

2
φ(x)e−xdx

= −φ(0) +

∫ ∞
−∞

φ(x)G(x)dx.

So, G satisfies the weak formulation. Clearly, G(x), G′(x)→ 0 as |x| → ∞.

(c). The solution is

u(x) = G ∗ f(x) =

∫ ∞
−∞

G(x− y)f(y)dy.

6. (10 points) Suppose u is smooth and solves the heat equation ut −∆u = 0 in Rn × (0,∞).

(a) Show uλ(x, t) := u(λx, λ2t) also solves the heat equation for each λ ∈ R.
(b) Use (a) to show v(x, t) := x · ∇u(x, t) + 2tut(x, t) solves the heat equation as well. Hint:

one can show that d
dλuλ solves the heat equation.

Solution: (a). Given any λ ∈ R, ∂tuλ(x, t) = λ2ut(λx, λ
2t), and ∆uλ(x, t) = λ2∆u(λx, λ2t).

Therefore,
(ut −∆u)(x, t) = λ2((uλ)t −∆uλ)(λx, λ2t) = 0.

(b). Since uλ solves the heat equation, d
dλuλ also solves the heat equation, for any λ ∈ R.

Compute
d

dλ
uλ = x · ∇u(λx, λ2t) + 2λut(λx, λ

2t).

Clearly, v = d
dtuλ

∣∣
λ=1

. So, v also solves the heat equation.

7. (15 points) Let B = {x ∈ R3 : |x| < π}, and let u be smooth up to the boundary in B, u = 0
on the boundary of B. Let ∆u+ u = f . Prove that∫

B

sin |x|
|x|

f(x)dx = 0.

Hint: one can use spherical representation of Laplacian operator: in 3D, if u is radially sym-
metric, namely u(x) = v(|x|) = v(r), then

∆u =
1

r2
d

dr

(
r2
dv

dr

)
.
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Solution: Compute

∆
sin |x|
|x|

=
1

r2
d

dr

(
r2
d

dr

sin r

r

)
= −sin r

r
= −sin |x|

|x|
.

Then, we use Gauss-Green formula and compute∫
B

sin |x|
|x|

f(x)dx =

∫
B

sin |x|
|x|

(∆u(x) + u(x))dx

=

∫
∂B

[
sin |x|
|x|

∂u(x)

∂n
− u(x)

∂

∂n

(
sin |x|
|x|

)]
dS(x) +

∫
B

∆
sin |x|
|x|

u(x)dx+

∫
B

sin |x|
|x|

u(x)dx

For the first term, sin |x|
|x| = sinπ

π = 0 and u(x) = 0 when x ∈ ∂B. Therefore,∫
B

sin |x|
|x|

f(x)dx = 0 +

∫
B

(
−sin |x|
|x|

)
u(x)dx+

∫
B

sin |x|
|x|

u(x)dx = 0.
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