MATH302 Elements of Analysis

Spring 2018

Homework 8, Due on Tuesday, April 17, 2018

For all the proofs, write in details using standard mathematical language.

1. Prove that a set S is dense in \mathbb{R} , if and only if

$$\forall L \in \mathbb{R} \exists \{x_n\} \subseteq S \ ((x_n) \text{ converges to } L).$$

- **2.** Let (x_n) be a convergent sequence.
 - a). If (x_{n_j}) is a subsequence of (x_n) which converges to L, then (x_n) also converges to L.
 - **b)**. (Bonus) there exists a monotone subsequence (x_{n_j}) which converges to the same limit.

3. (Newton's method) Let $f(x) = x^2 - 2$. Construct a sequence recursively using Newton's method

$$x_1 = 2$$
, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \frac{x_n}{2} + \frac{1}{x_n}$, $\forall n \in \mathbb{N}$.

- a). Prove that (x_n) is bounded.
- **b)**. Prove that (x_n) is monotone decreasing.

Hint: You can show that x_n is lower bounded by $\sqrt{2}$. Check the following useful identity:

$$x_{n+1} - \sqrt{2} = \frac{(x_n - \sqrt{2})^2}{2x_n}.$$

- c). Prove that (x_n) converges, and the limit is a root of f(x).
- **4.** Show that there exists a Cauchy sequence in $\mathbb Q$ that does not converge.
- 5. Ask yourself a question. It could be anything related to this course. State the problem. Try to solve it if you can manage to do it. If not, write down some thoughts about it.