MATH302 Elements of Analysis

Homework 3, Due on Tuesday, Febuary 20, 2018

For all the proofs, write in details using standard mathematical language.

1. (Non-uniqueness of positive set) Let $\mathbb{Q}(\sqrt{2})$ be the set defined as

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$$

- a). Prove that (Q(√2), +, ×) is a field.
 You only need to check rule (0) closure under + and ×, and rule (8) existence of multiplicative inverse. All other rules are trivial.
- **b**). Since $\mathbb{Q}(\sqrt{2})$ is a subset of \mathbb{R} , show that $(\mathbb{Q}(\sqrt{2}), P_1)$ is an ordered field, with the positive set P_1 defined as

 $P_1 = \{a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2}) : a + b\sqrt{2} \text{ is a positive real number}\}.$

c). Prove that $(\mathbb{Q}(\sqrt{2}), P_2)$ is also an ordered field, with the positive set P_2 defined as

 $P_2 = \{a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2}) : a - b\sqrt{2} \text{ is a positive real number}\}.$

2. (Uniqueness of positive set under additional assumptions) Suppose F is a field with a positive set P such that

(i) $x, y \in P \Rightarrow x + y, xy \in P$; (ii) Exactly one of the three holds: $x \in P, -x \in P, x = 0$; (iii) $\forall x \in P \exists y \in F (x = y^2)$.

Prove that the positive set P is unique. Note: condition (iii) is satisfied for \mathbb{R} . Therefore, \mathbb{R} has a unique order. Hint: Let $A = \{x^2 : x \in F\}$. Prove that P = A (by showing $P \subseteq A$ and $P \supseteq A$).

3. Prove the triangle inequality (Theorem 4.16 in the textbook).

4. Consider the space $\mathbb{R}^2 = \{x = (x_1, x_2) : x_1, x_2 \in \mathbb{R}\}$ with the following metric

$$d_{\infty}(x,y) = |x-y|_{\infty} := \max\{|x_1-y_1|, |x_2-y_2|\}.$$

- **a**). Prove that d_{∞} is a metric.
- **b)**. What is the unit ball in $(\mathbb{R}^2, |\cdot|_{\infty})$? It is defined as $B(0,1) = \{x \in \mathbb{R}^2 : |x|_{\infty} < 1\}$. Draw the ball in the \mathbb{R}^2 plane.
- c). (Bonus) Prove that B(0,1) is an open set in $(\mathbb{R}^2, |\cdot|_{\infty})$.

5. Finish excersise 4 in page 72 of the textbook.

- **a)**. If I = (a, b) and J = (c, d) are open intervals, show that $I \subseteq J$ if and only if $a \ge c$ and $b \le d$.
- b). Does this result change if the intervals are not open?