MATH141(0332/0342) Calculus II Fall 2009

Worksheet 9, Section 9.3-9.4

Name:

1. (3 points) Find the Taylor polynomial of the following f for the given value n=2, around the point x=0.

$$f(x) = \begin{cases} \frac{\sin(x)}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

Hint: $f'(0) = \lim_{x \to 0} f'(x)$, if the limit exists. To calculate this, you might use L'Hopital's rule.

2. (5 points) Let $\{a_n\}_{n=1}^{\infty}$ be the sequence $\sqrt{6}$, $\sqrt{6+\sqrt{6}}$, $\sqrt{6+\sqrt{6}+\sqrt{6}}$, ..., where in general, $a_{n+1} = \sqrt{6+a_n}$.

(1) Show that for every positic integer n, $0 < a_n < 3$. (Notice: $\sqrt{6} < 3$)

(2) Show that for every positie integer $n, a_n \leq a_{n+1}$.

Hint: $a_{n+1} - a_n = a_{n+1} - (a_{n+1}^2 - 6)$. You might find the result of (1) is useful to prove (2).

(3) Show that $\{a_n\}$ converges, and find the value of $\lim_{n\to\infty} a_n$.

3. (4 points) Determine whether the following infinite sum converges or diverges. If it converges, find its sum.

(1)
$$\sum_{n=2}^{\infty} \frac{1}{n^2 + 2n - 3}$$

(2)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} \quad [\text{Hint:} \frac{1}{n(n+1)(n+2)} = \frac{1}{2}(\frac{1}{n} - \frac{1}{n+1}) - \frac{1}{2}(\frac{1}{n+1} - \frac{1}{n+2})]$$

4. (4 points) Determine whether the following infinite sum converges or diverges. If it converges, find its sum.

(1)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{2n+1}}{5^{n-2}}$$

$$(2) \quad \sum_{n=1}^{\infty} \frac{3n^3 - n}{\sqrt{n+1}}$$